Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
translated by 谷歌翻译
Graph-structured data are widespread in real-world applications, such as social networks, recommender systems, knowledge graphs, chemical molecules etc. Despite the success of Euclidean space for graph-related learning tasks, its ability to model complex patterns is essentially constrained by its polynomially growing capacity. Recently, hyperbolic spaces have emerged as a promising alternative for processing graph data with tree-like structure or power-law distribution, owing to the exponential growth property. Different from Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gains natural advantages in abstracting tree-like or scale-free graphs with hierarchical organizations. In this tutorial, we aim to give an introduction to this emerging field of graph representation learning with the express purpose of being accessible to all audiences. We first give a brief introduction to graph representation learning as well as some preliminary Riemannian and hyperbolic geometry. We then comprehensively revisit the hyperbolic embedding techniques, including hyperbolic shallow models and hyperbolic neural networks. In addition, we introduce the technical details of the current hyperbolic graph neural networks by unifying them into a general framework and summarizing the variants of each component. Moreover, we further introduce a series of related applications in a variety of fields. In the last part, we discuss several advanced topics about hyperbolic geometry for graph representation learning, which potentially serve as guidelines for further flourishing the non-Euclidean graph learning community.
translated by 谷歌翻译
考虑到用户项目网络中幂律分布的流行率,双曲线空间最近引起了人们的关注,并在推荐系统中获得了令人印象深刻的性能。双曲线推荐的优点在于,其指数增加的能力非常适合描述幂律分布式用户项目网络,而欧几里得等效的不足。尽管如此,尚不清楚双曲模型可以有效地推荐哪些项目,哪些项目不能。为了解决上述问题,我们采用最基本的建议技术,将协作过滤作为一种媒介,以研究双曲线和欧几里得建议模型的行为。结果表明,(1)尾部在双曲线空间中比在欧几里得空间中更重点,但是仍然有足够的改进空间。 (2)头部物品在双曲线空间中受到适度的关注,这可以大大改善; (3)尽管如此,双曲线模型比欧几里得模型表现出更具竞争力的性能。在上述观察结果的驱动下,我们设计了一种新颖的学习方法,称为双曲线信息合作过滤(HICF),旨在弥补头部项目的建议有效性,同时提高尾部项目的性能。主要的想法是调整双曲线的排名学习,使其拉力和推动程序几何了解,并为学习头和尾部的学习提供信息指导。广泛的实验备份了分析结果,还显示了该方法的有效性。这项工作对于个性化的建议很有价值,因为它揭示了双曲线空间有助于建模尾部项目,这通常代表用户定制的偏好或新产品。
translated by 谷歌翻译
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of longtailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula (1−β n )/(1−β), where n is the number of samples and β ∈ [0, 1) is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets. * The work was performed while Yin Cui and Yang Song worked at Google (a subsidiary of Alphabet Inc.).
translated by 谷歌翻译
当前的Modus Operandi在改编预训练的模型中涉及更新所有骨干参数,即,完整的微调。本文介绍了视觉及时调整(VPT),作为视觉中大规模变压器模型的全面微调的有效替代方案。VPT从最近有效地调整大型语言模型的最新进展中汲取灵感,在输入空间中仅引入了少量的可训练参数(少于模型参数),同时保持模型骨架冻结。通过对各种下游识别任务的广泛实验,我们表明VPT与其他参数有效调整协议相比获得了显着的性能增长。最重要的是,在许多情况下,VPT甚至在模型能力和培训数据量表的许多情况下都胜过全面的微调,同时降低了每任务的存储成本。
translated by 谷歌翻译
神经网络分类器已成为当前“火车前的Fine-Tune”范例的De-Facto选择。在本文中,我们调查了K $ -Nearest邻居(K-NN)分类器,这是一种从预先学习时代的无古典无模型学习方法,作为基于现代神经网络的方法的增强。作为懒惰的学习方法,K-Nn简单地聚集了训练集中的测试图像和顶-k邻居之间的距离。我们采用k-nn具有由监督或自我监督方法产生的预训练的视觉表现,分为两个步骤:(1)利用K-NN预测概率作为培训期间容易\〜〜硬示例的迹象。 (2)用增强分类器的预测分布线性地插入k-nn。通过广泛的实验在广泛的分类任务中,我们的研究揭示了K-NN集成与额外见解的一般性和灵活性:(1)K-NN实现竞争结果,有时甚至优于标准的线性分类器。 (2)结合K-NN对参数分类器执行不良和/或低数据制度的任务特别有益。我们希望这些发现将鼓励人们重新考虑预先学习的角色,计算机愿景中的古典方法。我们的代码可用于:https://github.com/kmnp/nn-revisit。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译